Bunga Tunggal Yang Diperoleh Jika Modal?
Bunga Tunggal dan Contohnya Blog Koma – Hallow teman-teman, bagaimana kabarnya hari ini? Mudah-mudahan baik-baik saja. Pada artikel ini kita akan membahas materi bunga tunggal dengan judul, Bunga tunggal merupakan salah satu jenis perhitungan bunga dalam matematika keuangan dimana bunga dibagi menjadi dua yaitu bunga tunggal dan bunga majemuk.
- Sebelumnya juga telah dibahas pengenai “pengertian bunga dan contohnya”, silahkan dibaca untuk pemahaman awal dalam mempelajari bunga tunggal.
- Bunga tunggal adalah bunga yang diperoleh pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal yang dipinjam.
- Perhitungan bunga setiap periode selalu dihitung berdasarkan besarnya modal yang tetap.
Perhatikan ilustrasi kasus berikut ini! Iwan mendapatkan dana pinjaman dari yayasan pendidikan “Indonesia Pintar Berkarya” untuk melanjutkan pendidikan ke jenjang yang lebih tinggi dengan pinjaman Rp20.000.000,00 dengan bunga tunggal 5% per tahun selama 4 tahun.
Adi membayar lunas pinjamannya setelah 4 tahun sebesar Rp24.000.000,00 dengan rincian pinjaman sebagai berikut: Keterangan : Pada tabel di atas, terlihat bahwa besarnya bunga selalu sama setiap tahun yaitu sebesar Rp1.000.000 dengan perhitungan 5% dikalikan besarnya modal awal (Rp20.000.000) yaitu : $ 5\% \times 20.000.000 = 1.000.000 $.
Besarnya bunga yang tetap setiap periode inilah disebut bunga tunggal. Rumus Menghitung Bunga Tunggal Misalkan kita menabung atau meminjam uang dengan modal awal $ M $ dengan suku $i$ per periode selama $ n $ periode, besarnya bunga tunggal ($B$) dapat dihitung dengan rumus : Bunga = banyaknya periode $ \times $ suku bunga tiap periode $ \times $ modal awal.
- B = n \times i \times M $.
- Contoh Soal : 1).
- Suatu modal sebesar Rp1.000.000,00 dibungakan dengan suku bunga tunggal 2%/bulan.
- Tentukan bunga setelah 1 bulan, 2 bulan, dan 5 bulan! Penyelesaian : *).
- Diketahui : $ M = 1.000.000 \, $ dan $ i = 2\% = \frac $ *).
- Menentukan bunga setelah 1 bulan ($ n = 1 $) $ B = n \times i \times M = 1 \times \frac \times 1.000.000 = 20.000 $ *).
Menentukan bunga setelah 2 bulan ($ n = 2 $) $ B = n \times i \times M = 2 \times \frac \times 1.000.000 = 40.000 $ *). Menentukan bunga setelah 5 bulan ($ n = 5 $) $ B = n \times i \times M = 5 \times \frac \times 1.000.000 = 100.000 $ Catatan Penting : *).
Dari rumus $ B = n \times i \times M \, $, syarat utamanya adalah periodenya harus sama (satuan waktunya sama), *). Yang diubah boleh satuan $i \, $ nya atau satuan $ n \, $ sehingga sama. *). Misalkan beberapa kasus di bawah ini : i). Diketahui suku bunga ($i$) per tahun dan $ t $ dalam tahun, maka $ B = t \times i \times M $ ii).
Diketahui suku bunga ($i$) per tahun dan $ t $ dalam bulan, maka $ n = \frac \, $ tahun, sehingga $ B = \frac \times i \times M $ iii). Diketahui suku bunga ($i$) per tahun dan $ t $ dalam hari, maka $ n = \frac \, $ tahun (anggap 1 tahun = 360 hari), sehingga $ B = \frac \times i \times M $ iv).
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam tahun, maka $ n = 12 \times t \, $ bulan, sehingga $ B = 12 \times t \times i \times M $ v).
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam bulan, maka $ n = t \, $ bulan, sehingga $ B = t \times i \times M $ vi).
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam hari, maka $ n = \frac \, $ bulan (anggap 1 bulan = 30 hari), sehingga $ B = \frac \times i \times M $ Contoh soal : 2).
Budi menabung di bank sebesar Rp1.000.000 dengan suku bunga tunggal 6% per tahun. Tentukan besarnya bunga setelah menabung sebesar 3 tahun, 3 bulan, dan 36 hari (anggap 1 tahun = 360 hari)! Penyelesaian : *). Diketahui : $ M = 1.000.000 \, $ dan $ i = 6\% = \frac \, $ per tahun.
*). Bunga setelah 3 tahun : $ n = 3 \, $ tahun dan satuan sudah sama dengan $ i $ yaitu suku bunga pertahun. $ B = n \times i \times M = 3 \times \frac \times 1.000.000 = 180.000 $ *). Bunga setelah 3 bulan : $ n = $ 3 bulan $ = \frac = \frac \, $ tahun, $ B = n \times i \times M = \frac \times \frac \times 1.000.000 = 15.000 $ *).
Bunga setelah 36 hari : $ n = $ 36 hari $ = \frac = \frac \, $ tahun, $ B = n \times i \times M = \frac \times \frac \times 1.000.000 = 6.000 $ Rumus Menghitung Modal Akhir Bunga Tunggal Setelah kita bisa mencari besarnya bunga dalam bunga tunggal, berikutnya kita akan menghitung modal akhir ($M_n$) dari modal awal ($M$) setelah dibungankan selama $ n $ periode dengan suku bunga $ i \, $ setiap periodenya yaitu : Modal akhir = modal awal + bunga $ M_n = M + B \, $ dengan $ B = n \times i \times M $ sehingga : $ \begin M_n & = M + B \\ & = M + n \times i \times M \\ & = M(1 + n \times i) \end $ Jadi, rumus modal akhir adalah $ M_n = M(1 + n i) $,
- Contoh soal : 3).
- Suatu modal sebesar Rp1.000.000,00 dibungakan dengan bunga tunggal selama 3 tahun dengan suku bunga 18%/tahun.
- Tentukan bunga yang diperoleh dan modal akhir setelah dibungakan! Penyelesaian : *).
- Diketahui : M = 1.000.000, $ n = 3 \, $, dan $ i = 18\% = \frac $ *).
- Menentukan besarnya bungan (B) : $ B = n \times i \times M = 3 \times \frac \times 1.000.000 = 540.000 $ *).
Menentukan modal akhir ($M_n$) : $ M_n = M + B = 1.000.000 + 540.000 = 1.540.000 $ Jadi, besarnya bungan Rp540.000 dan modal akhirnya Rp1.540.000. *). Untuk menghitung besarnya modal akhir pada contoh soal nomor 3 ini bisa langsung dengan rumus $M_n = M(1 + ni) $.
Begin M_n & = M(1 + ni) \\ & = 1.000.000 \times (1 + 3 \times \frac ) \\ & = 1.000.000 \times (1 + \frac ) \\ & = 1.000.000 \times ( \frac + \frac ) \\ & = 1.000.000 \times ( \frac ) \\ & = 1.540.000 \end $ Jadi, kita peroleh hasil yang untuk besarnya modal akhir yaitu Rp1.540.000.4). Budi menabung di bank A sebesar Rp2.500.000 dengan suku bunga 3%/cawu.
Jika ia menabung selama 1 tahun 7 bulan, maka berapa besar bunga dan tabungan akhir yang diperoleh Budi? Penyelesaian : *). Karena satuan $ i $ dan $ n \, $ belum sama, maka kita samakan terlebih dahulu menjadi bulan semua.1 cawu = 4 bulan, sehingga : $ i = 3\% $ tiap cawu $ = \frac = \frac \% = \frac \, $ tiap bulan.
N = $ 1 tahun 7 bulan = 12 + 7 = 19 bulan. *). Menentukan besarnya bunga (B) : $ B = n \times i \times M = 19 \times \frac \times 2.500.000 = 356.250 $, *). Menentukan tabungan akhir/modal akhir ($M_n$) : $ M_n = M + B = 2.500.000 + 356.250 = 2.856.250 $ Jadi, besarnya bungan Rp356.250 dan tabungan akhirnya Rp2.856.250.5).
Suatu pinjaman sebesar Rp2.500.000,00 dibungakan dengan bunga tunggal selama 2 tahun 3 bulan. Ternyata bunga yang diperoleh Rp450.000,00. Tentukan suku bunganya tiap tahun dan tiap triwulan! Penyelesaian : *). Diketahui : M = 2.500.000, B = 450.000, dan $ n = 27 \, $ bln.
Menentukan suku bunga ($i$) tiap bulan : $ \begin B & = n \times i \times M \\ 450.000 & = 27 \times i \times 2.500.000 \\ i & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \times 100\% \\ & = \frac \% \\ \end $ artinya suku bunga setiap bulannya adalah $ \frac \% $. *).
Suku bunga setiap tahun dan tiap triwulan : Suku bunga tiap tahun = $ 12 \times \frac \% = 8 \% $, Suku bunga tiap triwulan = $ 3 \times \frac \% = 2 \% $, Jadi, kita peroleh suku bunga 8%/tahun dan 2%/triwulan.6). Suatu pinjaman sebesar Rp1.500.000,00 dibungakan dengan suku bunga tunggal 7.5%/semester.
Ternyata modal tersebut menjadi Rp1.800.000,00. Setelah berapa bulan bunga tersebut dibungakan? Penyelesaian : *). Diketahui : M = 1.500.000 dan $ M_n = 1.800.000 $. *). suku bunga kita ubah dulu menjadi tiap bulan, 1 semester = 6 bulan, sehingga suku bunga tiap bulan = $ \frac = \frac \times = \frac $ artinya $ i = \frac \, $ tiap bulan.
*). Menentukan besarnya bunga (B) : $ M_n = B + M \rightarrow B = M_n – M = 1.800.000 – 1.500.000 = 300.000 $. *). Menentukan lama dibungakan ($n$) : $ \begin B & = n \times i \times M \\ 300.000 & = n \times \frac \times 1.500.000 \, \, \, \, \, \text \\ 1 & = n \times \frac \times 5 \\ 1 & = n \times \frac \\ n & = 16 \end $ Jadi, lamanya dibungakan selama 16 bulan.7).
Suatu modal setelah dibungakan dengan bunga tunggal 15%/tahun selama 2 tahun modal tersebut menjadi Rp6.110.000,00. Tentukan Modal mula-mula! Penyelesaian : *). Diketahui : $ i = 15\% = \frac = \frac \, $, $ M_n = 6.110.000\, $ dan $ n = 2 $. *). Menentukan modal awal/mula-mula (M) : $ \begin M_n & = M(1 + ni) \\ M & = \frac \\ & = \frac } \\ & = \frac } \\ & = \frac } \\ & = 6.110.000 \times \frac \\ & = 4.700.000 \end $ Jadi, modal awalnya adalah Rp4.700.000,00.
Demikian pembahasan materi Bunga Tunggal dan Contohnya, Selanjutnya silahkan baca juga materi lain yang berkaitan dengan, : Bunga Tunggal dan Contohnya
Contents
Bagaimana cara mencari modal bunga tunggal?
Rumus Mencari Modal Bunga Tunggal: Modal (Rp) = (100 x BungaRupiah) / (Waktu x BungaPersen) Untuk memperjelas cara perhitungan bunga tunggal baik mencari Uang jasa/Bunga Rupiah, tenggat waktu, dan persentase bunga tunggal itu sendiri dapat dilihat pada beberapa contoh soal dan jawaban berikut :
Apa itu bunga tunggal?
Tanya jawab seputar bunga tunggal – Apa itu bunga tunggal? Bunga tunggal adalah bunga yang didapat pada setiap akhir jangka waktu tertentu, tetapi tidak memengaruhi modal yang dipinjam. Dengan kata lain, perhitungan bunga setiap periode selalu dihitung berdasarkan modal tetap.
- Bagaimana cara menghitung bunga tabungan? Ada tiga cara atau rumus untuk menghitung bunga tabungan: metode saldo terendah, metode saldo harian, dan metode saldo harian rata-rata.
- Tiap-tiap rumus disesuaikan dengan kebijakan bank masing-masing.
- Apa itu bunga majemuk? Bunga majemuk adalah bunga yang diberikan berdasarkan modal awal dan akumulasi bunga pada periode sebelumnya.
Bunga ini punya banyak variasi dan selalu berubah tiap periodenya. Dengan kata lain, bunga majemuk bakal mengakumulasikan bunga dengan periode sebelumnya. Apa bedanya bunga tunggal dan bunga majemuk? Salah satu perbedaan bunga tunggal dan bunga majemuk adalah bunga tunggal dihitung berdasarkan modal yang sama setiap periode, sedangkan bunga majemuk dihitung berdasarkan modal awal yang telah ditambahkan dengan bunga.
Bagaimana cara menghitung jumlah bunga dari beberapa modal?
2. Metode persen yang sebanding – Metode kedua ini digunakan jika suku bunga (angkanya) bukan pembagi habis 360. Kenapa 360? Karena 360 menjadi patokan lamanya hari dalam setahun. Contohnya, lama menabung 150 hari. Maka lamanya hari menabung tersebut tidak bisa membagi habis 360 hari (1 tahun). Untuk mengatasi hal seperti ini, maka perhitungannya dilakukan dengan cara berikut:
Menghitung besar bunga dengan berpatokan pada persentase terdekat suku bunga yang pembaginya habis 360. Menghitung besar bunga yang dimaksud dengan menggunakan persen yang sama bandingannya.
Contohnya:
Nama Nasabah | Jumlah Pinjaman (M) | Jangka Waktu Pengembalian (t) | (M x t) : 100 |
A | Rp1 juta | 50 hari | Rp500 ribu |
B | Rp8 juta | 100 hari | Rp8 juta |
C | Rp4,5 juta | 60 hari | Rp2,7 juta |
D | Rp2 juta | 120 hari | Rp2,4 juta |
E | Rp2,5 juta | 90 hari | Rp2,25 juta |
Jumlah | Rp15.850.000,- |
Untuk menentukan bunga total yang diterima Koperasi Simpan Pinjam A-Z dengan suku bunga tunggal (i) 11 persen dan 1 tahun dianggap 360 hari (t) adalah:
Suku bunga i = 11% diuraikan menjadi = 10% + 1% atau 9% + 2% Ditentukan dahulu jumlah angka bunga untuk i = 10% Pembagi tetap = 360/i = 360/10 = 36 Jumlah angka bunga = Rp15.850.000,- Jumlah bunga = jumlah angka bunga/pembagi tetap = Rp14.850.000,00/36 = Rp440.277,78 Bunga yang sebanding dengan 1% = 1%/10% x Rp440.227,78 = Rp44.027,78
Jadi, bunga total dari suku bunga 11% = Rp440.277,78 + Rp44.027,78 = Rp484.305,56 Berdasarkan hitungan tersebut, maka bunga total yang diterima Koperasi Simpan Pinjam A-Z adalah Rp484.305,56
Apa Contoh Soal menghitung bunga tunggal?
Contoh Soal Menghitung Bunga Tunggal – Contoh Soal Menghitung Bunga Tunggal. Foto: iStock Berikut beberapa contoh soal menghitung bunga tunggal, Jika uang sejumlah Rp50.000.000,00 ditabung selama 3 tahun pada bunga 4,5%, berapakah bunga tunggal yang didapat? Diketahui: Modal (M) adalah Rp50.000.000,00, persentase bunga (b) adalah 4,5%, dan waktu (t) adalah 3 tahun.
Ditanyakan: Bunga tunggal. B = M x b x t = Rp50.000.000,00 x 4,5% x 3 = Rp6.750.000,00 Jadi, besarnya bunga yang diterima setelah 3 tahun adalah Rp6.750.000,00. Rudi menyimpan uang di bank sebesar Rp500.000,00 dan mendapat bunga tunggal sebesar 18% setahun. Berapakah besar uang Rudi setelah satu tahun? Diketahui: Modal (M) adalah Rp500.000,00 dan persentase bunga (b) adalah 18%.
Ditanyakan: Jumlah total uang. Bunga 1 tahun = 18% x Rp500.000,00 = Rp90.000,00 Jumlah Total Uang = Modal + Bunga = Rp500.000,00 + Rp90.000,00 = Rp590.000,00 Jadi, jumlah uang Rudi setelah disimpan selama satu tahun di bank adalah Rp590.000,00.