Bunga Yang Dihitung Berdasarkan Besarnya Modal Saja Disebut?
– Pengertian Bunga Tunggal – Bunga tunggal adalah bunga yang diperoleh pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal yang dipinjam. Dalam kata lain, perhitungan bunga setiap periode selalu dihitung berdasarkan besarnya modal yang tetap.
- Sebelumnya juga telah dibahas pengenai “pengertian bunga dan contohnya”, silahkan dibaca untuk pemahaman awal dalam mempelajari bunga tunggal.
- Bunga tunggal adalah bunga yang diperoleh pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal yang dipinjam.
- Perhitungan bunga setiap periode selalu dihitung berdasarkan besarnya modal yang tetap.
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam tahun, maka $ n = 12 \times t \, $ bulan, sehingga $ B = 12 \times t \times i \times M $ v).
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam bulan, maka $ n = t \, $ bulan, sehingga $ B = t \times i \times M $ vi).
- Diketahui suku bunga ($i$) per bulan dan $ t $ dalam hari, maka $ n = \frac \, $ bulan (anggap 1 bulan = 30 hari), sehingga $ B = \frac \times i \times M $ Contoh soal : 2).
- Contoh soal : 3).
- Suatu modal sebesar Rp1.000.000,00 dibungakan dengan bunga tunggal selama 3 tahun dengan suku bunga 18%/tahun.
- Tentukan bunga yang diperoleh dan modal akhir setelah dibungakan! Penyelesaian : *).
- Diketahui : M = 1.000.000, $ n = 3 \, $, dan $ i = 18\% = \frac $ *).
- Menentukan besarnya bungan (B) : $ B = n \times i \times M = 3 \times \frac \times 1.000.000 = 540.000 $ *).
- Begin M_n & = M(1 + ni) \\ & = 1.000.000 \times (1 + 3 \times \frac ) \\ & = 1.000.000 \times (1 + \frac ) \\ & = 1.000.000 \times ( \frac + \frac ) \\ & = 1.000.000 \times ( \frac ) \\ & = 1.540.000 \end $ Jadi, kita peroleh hasil yang untuk besarnya modal akhir yaitu Rp1.540.000.4).
- Budi menabung di bank A sebesar Rp2.500.000 dengan suku bunga 3%/cawu.
- N = $ 1 tahun 7 bulan = 12 + 7 = 19 bulan. *).
- Menentukan besarnya bunga (B) : $ B = n \times i \times M = 19 \times \frac \times 2.500.000 = 356.250 $, *).
- Menentukan tabungan akhir/modal akhir ($M_n$) : $ M_n = M + B = 2.500.000 + 356.250 = 2.856.250 $ Jadi, besarnya bungan Rp356.250 dan tabungan akhirnya Rp2.856.250.5).
- Ternyata modal tersebut menjadi Rp1.800.000,00.
- Setelah berapa bulan bunga tersebut dibungakan? Penyelesaian : *).
- Diketahui : M = 1.500.000 dan $ M_n = 1.800.000 $. *).
- Suku bunga kita ubah dulu menjadi tiap bulan, 1 semester = 6 bulan, sehingga suku bunga tiap bulan = $ \frac = \frac \times = \frac $ artinya $ i = \frac \, $ tiap bulan.
- Suatu modal setelah dibungakan dengan bunga tunggal 15%/tahun selama 2 tahun modal tersebut menjadi Rp6.110.000,00.
- Tentukan Modal mula-mula! Penyelesaian : *).
- Diketahui : $ i = 15\% = \frac = \frac \, $, $ M_n = 6.110.000\, $ dan $ n = 2 $. *).
- Menentukan modal awal/mula-mula (M) : $ \begin M_n & = M(1 + ni) \\ M & = \frac \\ & = \frac } \\ & = \frac } \\ & = \frac } \\ & = 6.110.000 \times \frac \\ & = 4.700.000 \end $ Jadi, modal awalnya adalah Rp4.700.000,00.
- Dalam pengertian yang lebih luas, ketika seseorang meminjam uang kepada pihak lain, dia harus mengembalikan uang itu, dan biasanya ditambah dengan biaya tambahan atau yang disebut juga bunga.
- Bunga juga merujuk pada definisi uang yang didapatkan apabila menabung uang di bank.
- Etika seseorang menabung sejumlah uang kepada pihak bank, dia akan memperoleh uang tambahan atas penggunaan uang tersebut.
Contents
Bagaimana cara menghitung bunga modal?
Bunga Tunggal dan Contohnya Blog Koma – Hallow teman-teman, bagaimana kabarnya hari ini? Mudah-mudahan baik-baik saja. Pada artikel ini kita akan membahas materi bunga tunggal dengan judul, Bunga tunggal merupakan salah satu jenis perhitungan bunga dalam matematika keuangan dimana bunga dibagi menjadi dua yaitu bunga tunggal dan bunga majemuk.
Perhatikan ilustrasi kasus berikut ini! Iwan mendapatkan dana pinjaman dari yayasan pendidikan “Indonesia Pintar Berkarya” untuk melanjutkan pendidikan ke jenjang yang lebih tinggi dengan pinjaman Rp20.000.000,00 dengan bunga tunggal 5% per tahun selama 4 tahun.
Adi membayar lunas pinjamannya setelah 4 tahun sebesar Rp24.000.000,00 dengan rincian pinjaman sebagai berikut: Keterangan : Pada tabel di atas, terlihat bahwa besarnya bunga selalu sama setiap tahun yaitu sebesar Rp1.000.000 dengan perhitungan 5% dikalikan besarnya modal awal (Rp20.000.000) yaitu : $ 5\% \times 20.000.000 = 1.000.000 $.
Besarnya bunga yang tetap setiap periode inilah disebut bunga tunggal. Rumus Menghitung Bunga Tunggal Misalkan kita menabung atau meminjam uang dengan modal awal $ M $ dengan suku $i$ per periode selama $ n $ periode, besarnya bunga tunggal ($B$) dapat dihitung dengan rumus : Bunga = banyaknya periode $ \times $ suku bunga tiap periode $ \times $ modal awal.
$ B = n \times i \times M $. Contoh Soal : 1). Suatu modal sebesar Rp1.000.000,00 dibungakan dengan suku bunga tunggal 2%/bulan. Tentukan bunga setelah 1 bulan, 2 bulan, dan 5 bulan! Penyelesaian : *). Diketahui : $ M = 1.000.000 \, $ dan $ i = 2\% = \frac $ *). Menentukan bunga setelah 1 bulan ($ n = 1 $) $ B = n \times i \times M = 1 \times \frac \times 1.000.000 = 20.000 $ *).
Menentukan bunga setelah 2 bulan ($ n = 2 $) $ B = n \times i \times M = 2 \times \frac \times 1.000.000 = 40.000 $ *). Menentukan bunga setelah 5 bulan ($ n = 5 $) $ B = n \times i \times M = 5 \times \frac \times 1.000.000 = 100.000 $ Catatan Penting : *).
Dari rumus $ B = n \times i \times M \, $, syarat utamanya adalah periodenya harus sama (satuan waktunya sama), *). Yang diubah boleh satuan $i \, $ nya atau satuan $ n \, $ sehingga sama. *). Misalkan beberapa kasus di bawah ini : i). Diketahui suku bunga ($i$) per tahun dan $ t $ dalam tahun, maka $ B = t \times i \times M $ ii).
Diketahui suku bunga ($i$) per tahun dan $ t $ dalam bulan, maka $ n = \frac \, $ tahun, sehingga $ B = \frac \times i \times M $ iii). Diketahui suku bunga ($i$) per tahun dan $ t $ dalam hari, maka $ n = \frac \, $ tahun (anggap 1 tahun = 360 hari), sehingga $ B = \frac \times i \times M $ iv).
Budi menabung di bank sebesar Rp1.000.000 dengan suku bunga tunggal 6% per tahun. Tentukan besarnya bunga setelah menabung sebesar 3 tahun, 3 bulan, dan 36 hari (anggap 1 tahun = 360 hari)! Penyelesaian : *). Diketahui : $ M = 1.000.000 \, $ dan $ i = 6\% = \frac \, $ per tahun.
*). Bunga setelah 3 tahun : $ n = 3 \, $ tahun dan satuan sudah sama dengan $ i $ yaitu suku bunga pertahun. $ B = n \times i \times M = 3 \times \frac \times 1.000.000 = 180.000 $ *). Bunga setelah 3 bulan : $ n = $ 3 bulan $ = \frac = \frac \, $ tahun, $ B = n \times i \times M = \frac \times \frac \times 1.000.000 = 15.000 $ *).
Bunga setelah 36 hari : $ n = $ 36 hari $ = \frac = \frac \, $ tahun, $ B = n \times i \times M = \frac \times \frac \times 1.000.000 = 6.000 $ Rumus Menghitung Modal Akhir Bunga Tunggal Setelah kita bisa mencari besarnya bunga dalam bunga tunggal, berikutnya kita akan menghitung modal akhir ($M_n$) dari modal awal ($M$) setelah dibungankan selama $ n $ periode dengan suku bunga $ i \, $ setiap periodenya yaitu : Modal akhir = modal awal + bunga $ M_n = M + B \, $ dengan $ B = n \times i \times M $ sehingga : $ \begin M_n & = M + B \\ & = M + n \times i \times M \\ & = M(1 + n \times i) \end $ Jadi, rumus modal akhir adalah $ M_n = M(1 + n i) $,
Menentukan modal akhir ($M_n$) : $ M_n = M + B = 1.000.000 + 540.000 = 1.540.000 $ Jadi, besarnya bungan Rp540.000 dan modal akhirnya Rp1.540.000. *). Untuk menghitung besarnya modal akhir pada contoh soal nomor 3 ini bisa langsung dengan rumus $M_n = M(1 + ni) $.
Jika ia menabung selama 1 tahun 7 bulan, maka berapa besar bunga dan tabungan akhir yang diperoleh Budi? Penyelesaian : *). Karena satuan $ i $ dan $ n \, $ belum sama, maka kita samakan terlebih dahulu menjadi bulan semua.1 cawu = 4 bulan, sehingga : $ i = 3\% $ tiap cawu $ = \frac = \frac \% = \frac \, $ tiap bulan.
Suatu pinjaman sebesar Rp2.500.000,00 dibungakan dengan bunga tunggal selama 2 tahun 3 bulan. Ternyata bunga yang diperoleh Rp450.000,00. Tentukan suku bunganya tiap tahun dan tiap triwulan! Penyelesaian : *). Diketahui : M = 2.500.000, B = 450.000, dan $ n = 27 \, $ bln.
*). Menentukan suku bunga ($i$) tiap bulan : $ \begin B & = n \times i \times M \\ 450.000 & = 27 \times i \times 2.500.000 \\ i & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \\ & = \frac \times 100\% \\ & = \frac \% \\ \end $ artinya suku bunga setiap bulannya adalah $ \frac \% $. *).
Suku bunga setiap tahun dan tiap triwulan : Suku bunga tiap tahun = $ 12 \times \frac \% = 8 \% $, Suku bunga tiap triwulan = $ 3 \times \frac \% = 2 \% $, Jadi, kita peroleh suku bunga 8%/tahun dan 2%/triwulan.6). Suatu pinjaman sebesar Rp1.500.000,00 dibungakan dengan suku bunga tunggal 7.5%/semester.
*). Menentukan besarnya bunga (B) : $ M_n = B + M \rightarrow B = M_n – M = 1.800.000 – 1.500.000 = 300.000 $. *). Menentukan lama dibungakan ($n$) : $ \begin B & = n \times i \times M \\ 300.000 & = n \times \frac \times 1.500.000 \, \, \, \, \, \text \\ 1 & = n \times \frac \times 5 \\ 1 & = n \times \frac \\ n & = 16 \end $ Jadi, lamanya dibungakan selama 16 bulan.7).
Demikian pembahasan materi Bunga Tunggal dan Contohnya, Selanjutnya silahkan baca juga materi lain yang berkaitan dengan, : Bunga Tunggal dan Contohnya
Apa yang dimaksud dengan bunga?
Bunga Tunggal: Pengertian, Rumus, dan Contoh Soalnya. Foto: iStock Secara umum, bunga adalah uang yang dibayarkan atau penggunaan uang. Bunga biasanya dituliskan sebagai persentase. Persentase bunga yang dihitung hanya berdasarkan modal awal dinamakan bunga tunggal,
Uang tambahan inilah yang disebut bunga. Ada dua jenis bunga, yaitu bunga tunggal dan bunga majemuk. Namun, artikel ini hanya akan membahas jenis bunga yang pertama, yaitu bunga tunggal.
Bagaimana Cara menentukan besar modal beserta bunganya?
Bunga Tunggal Setoran Tunggal –
Artinya, penabung menabung hanya sekali di awal periode, setelah itu terus dibungakan selama beberapa periode. Besarnya bunga dinyatakan dalam % (persen) dan disebut sebagai suku bunga. Suku bunga adalah perbandingan antara bunga dengan modal dalam satuan waktu tertentu (bulan atau tahun). Sehingga, suku bunga per tahunnya dinyatakan dengan: Contoh: Marsha meminjam uang di bank sejumlah Rp 1.500.000,00. Dalam jangka waktu satu tahun, ia harus mengembalikan Rp 1.620.000,00. Uang Rp 1.500.000,00 disebut sebagai modal dan uang kelebihan Rp 120.000,00 disebut bunga atau jasa atas pinjaman modal. Maka suku bunga pinjaman Marsha adalah Jawab: Dalam bentuk yang lebih umum, jika suatu modal M o dibungakan dengan jasa modal sebesar B, maka suku bunga b per satuan waktu ditentukan dengan rumus: Jika modal M o dibungakan selama n periode (bulan atau tahun) dan suku bunga b% (per bulan atau per tahun) dengan cara bunga tunggal, maka rumus menentukan besar modal beserta bunganya adalah: Kemudian besar bunga yang diterima per periode adalah:
Contoh: Modal sebesar Rp 2.000.000,00 dipinjamkan dengan bunga tunggal. Hitunglah besarnya bunga dan modal akhir, jika suku bunga per tahun 11% dalam jangka waktu 5 tahun. Jawab: Suku bunga 11% per tahun, bunga dalam 1 tahun: B = ( 11/ 100) x 2.000.000 = Rp 220.000,00 Bunga dalam 5 tahun: B = 5 x 220.000 = Rp 1.100.000,00 Modal seluruhnya: M = 2.000.000 + 1.100.000 = Rp 3.100.000,00 atau
- Dalam pengertian yang lebih luas, ketika seseorang meminjam uang kepada pihak lain, dia harus mengembalikan uang itu, dan biasanya ditambah dengan biaya tambahan atau yang disebut juga bunga.
- Bunga juga merujuk pada definisi uang yang didapatkan apabila menabung uang di bank.
- Etika seseorang menabung sejumlah uang kepada pihak bank, dia akan memperoleh uang tambahan atas penggunaan uang tersebut.
Apa itu bunga tunggal?
Bunga Tunggal: Pengertian, Rumus, dan Contoh Soalnya. Foto: iStock Secara umum, bunga adalah uang yang dibayarkan atau penggunaan uang. Bunga biasanya dituliskan sebagai persentase. Persentase bunga yang dihitung hanya berdasarkan modal awal dinamakan bunga tunggal,
Uang tambahan inilah yang disebut bunga. Ada dua jenis bunga, yaitu bunga tunggal dan bunga majemuk. Namun, artikel ini hanya akan membahas jenis bunga yang pertama, yaitu bunga tunggal.